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Glossary

communality Variance of a variable accounted for by the
factors.

factor Latent variable that determines to a considerable
extent the values of the observed variables.

factor loading Weight indicating the direct influence of
a factor on a variable.

factor structure Matrix of covariances between factors
and variables. If the variables are standardized, then the
factor structure matrix contains correlations rather than
covariances.

oblique rotation Factor transformation designed to achieve
a simple interpretation of the factors.

orthogonal rotation Factor transformation designed to
achieve a simple interpretation of mutually uncorrelated
factors.

uniqueness Amount of variable variance unrelated to factors.

Factor analysis is a multivariate statistical technique
for finding theoretical concepts that underlie the
association between observed variables. To this end,
the factor model introduces latent variables, commonly
referred to as factors, and posits that the observed
variables are determined, except for random error,
by these factors. Factor analysis is particularly
well-suited to psychology, wherein concepts such as
‘‘intelligence’’ can be observed only indirectly—for in-
stance, by noticing which test problems an individual is
able to solve correctly.

Introduction

Spearman noted in 1904 that measures of performance
for certain cognitive tasks are often positively correlated.
If an individual performs well on, say, an intelligence-
related task, he or she also tends to do well on similar
tasks. To explain this phenomenon, Spearman introduced
a general ability factor, commonly referred to as the
g-factor, that he claimed determines performance of
intelligence-related tasks to a considerable extent, albeit
not completely. Thus, positive correlations between
intelligence-related tasks were explained by Spearman
in terms of the g-factor’s influence on each of these
tasks. During the first half of the 20th century, factor
analysis developed rapidly from a substantive theory on
intelligence into a general statistical procedure. An early
comprehensive account of factor analysis was given in
1947 by Thurstone.

The main idea of factor analysis is to ‘‘explain’’ corre-
lations between observed variables in terms of a few un-
observable variables, commonly called factors or latent
variables. It will be convenient to refer to the observable
and unobservable variables simply as variables and fac-
tors, respectively. More specifically, the model states that
the factors determine the variables in such a way that
when holding the factors constant, the residual variation
of the variables is uncorrelated. If the number of factors
needed to explain the correlations is ‘‘small,’’ compared to
the number of variables, then the factor model is appeal-
ing because the associations between the variables can be
explained in a parsimonious manner.

Factor analysis is used if latent variables are assumed to
underlie the association among the variables, but the
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conceptual nature of the factors is unclear before fitting
the factor model to data. Because the purpose of factor
analysis is to clarify the nature of the factors, one also
speaks of exploratory factor analysis as opposed to confir-
matory factor analysis, a closely related statistical technique
that requires specific a priori assumptions about the fac-
tors and their relationships to the variables. Although in
practice the factor model is almost always fitted to the
sample correlation matrix, it is common to discuss the
model in terms of the sample covariance matrix. This
convention is followed here. Finally, note that factor anal-
ysis is different from principal component analysis. Al-
though these two statistical techniques are frequently
confused, they address different issues. While factor
analysis explains observed correlations in terms of latent
factors, principal component analysis is a data reduction
technique that yields linear composites of the observed
variables referred to as ‘‘components.’’

The Factor Model

Considerp variables, each having zero expectation, that is,
E(xi)¼ 0, i¼ 1, . . . , p. The factor model states that the
conditional expectation of each variables is a linear func-
tion of q factors, x1, . . . , xq. In other words, the factor
model claims

Eðxi j x1 � � � xqÞ ¼ li1x1 þ � � � þ liqxq,

for i¼ 1, . . . , p. The factor loadings, lij, are regression
coefficients that indicate the expected change in the ith
variable that is related to a unit change in the jth factor,
holding all other factors constant. Thus, the loadings
measure the direct influence of a factor on the variables.
Expressing the equations of all variables simultaneously
in a single equation using matrix notation yields

E x j jð Þ ¼ Kj, ð1Þ

where x is a (p� 1) vector of random variables that have
zero mean, j is a (q� 1) vector of random factors, and
K¼ (lij) is a (p� q) matrix of factor loadings.

In addition to Eq. (1), the factor model makes two
further assumptions. First, as has been mentioned, the
variables are assumed to be uncorrelated when control-
ling for the factors. If the conditional covariance matrix
is denoted as W, that is, W¼Var(x j j), then this assump-
tion can be expressed as W¼ diag(c11, . . . ,cpp). The
c-parameters are referred to as uniquenesses. Second,
the model assumes E(xj)¼ 0 and Var(xj)¼ 1, for j¼
1, . . . , q. This assumption removes the arbitrariness in
the scales of the factors and does not restrict the
generality of the factor model.

Defining the residual vector as e¼ x�E(x j j), it is not
difficult to see that W¼Var(e). Both specific factors and

measurement error may contribute to the residual term.
However, because the factor model does not allow for
the separation of these two sources of observed score
variability, we do not distinguish between them.

FromEq. (1) and the preceding assumptions, it follows
that the covariance matrix of the variables is

R ¼ KUK0 þW, ð2Þ

where U¼ (fij) denotes the correlation matrix of the
factors. Equation (2) shows that each variable’s variance
is the sum of two separate sources. One source
encompasses the influences of specific factors and
measurement error and is referred to as the variable’s
uniqueness, cii. The other source, commonly referred to
as the variable’s communality, h2i , is the influence the
factors have on determining the variable values. More
specifically, the communality is defined as h2i ¼
Var E xi jjð Þð Þ and is given in terms of the model
parameters by the ith diagonal element of KUK0.

The covariance between factors and variables,

Cov x, jð Þ ¼ KU, ð3Þ

is called the factor structure. Specializing this expres-
sion to a variable�factor pair yields Cov(xi, xj)¼
li1f1jþ � � � þ liqfqj. The covariances of the factor
structure matrix do not control for other factors. This
means that even if a particular variable has a zero
loading on, say, the first factor, it still can be correlated
with the first factor because of indirect effects.
Specifically, if the variable loads on a factor that is also
correlated with the first factor, the variable will be
correlated with the first factor despite its zero loading on
this factor. Also note that for standardized variables, the
factor structure matrix gives the correlations rather than
the covariances between the factors and the variables.

An important special case occurs if the factors are un-
correlated, that is,U¼ I. In this case, the factors are said
to be orthogonal and several of the preceding equations
simplify. First, the communality of the ith variable re-
duces to h2i ¼ l2i1 þ � � � þ l2iq. Second, the factor structure
matrix [see Eq. (3)] is equal to the factor loading matrix,
that is, Cov(x, j)¼K. Thus, if the factors are orthogonal,
a zero loading will imply a zero covariance between the
corresponding variable�factor pair. Again, note that for
standardized variables, the l parameters represent cor-
relations rather than covariances between variables�
factor pairs.

Estimating the Model Parameters

Before discussing approaches to estimating the factor
loadings, it should be noted that factor loadings are not
uniquely defined. If T is a nonsingular (q� q) matrix
such that diag(TUT0)¼ I, then j� ¼Tj will be an equally
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legitimate set of factors with K� ¼KT�1. This follows be-
cause the assumptions of the factormodel are also fulfilled
by the new factors j� and the fact that the conditional
expectation of the variables is invariant to this transfor-
mation. This is easily seen by noting that E(x j j�)¼
K�j� ¼ (KT�1)(Tj)¼Kj¼E(x j j). When the factors
are uncorrelated, the set of legitimate transformation ma-
trices T is limited to orthogonal matrices, which fulfill the
condition TT0 ¼ I. In order to obtain a solution for the
factor loadings, it is desirable to remove this indetermi-
nacy. This can be achieved if the factors are uncorrelated,
that is, U¼ I, and if the so-called canonical constraint,
which requires K0W�1K to be diagonal, is satisfied.

Having imposed sufficient model restrictions to define
the parameters uniquely, the degrees of freedom (df ) can
be determined. The degrees of freedom are equal to the
difference between the p(pþ 1)/2 freely varying elements
in the unconstrained population covariance matrix R and
the number of unrestricted model parameters. The
degrees of freedom characterize the extent to which
the factor model offers a simple explanation of the cor-
relations among the variables. A necessary condition for
the identification of the model parameters is df� 0.
Clearly, if the factors are uncorrelated, all model param-
eters are either loadings or uniquenesses and the total
number of model parameters is pqþ p. Because the ca-
nonical constraint introduces q(q� 1)/2 restrictions on
the model parameters, the degrees of freedom are

df ¼ pðpþ 1Þ=2� pqþ p� qðq� 1Þ=2
� �

¼ ð1=2Þ
�
ðp� qÞ2 �ðpþ qÞ

�
: ð4Þ

Estimation procedures may yield negative estimates
for the c parameters that are outside the permissible
range. Such inadmissible solutions are commonly re-
ferred to as Heywood cases. Heywood cases occur
quite frequently in practice. A simple strategy of dealing
with negative uniquenesses is to set them equal to zero.
However, this strategy implies an unrealistic model char-
acteristic, namely, that the factors perfectly explain the
variation of the variables having zero uniquenesses. Fi-
nally, note that methods for estimating the factor loadings
assume that the number of factors is known.

Maximum-Likelihood Factor Analysis

When estimating the factor loadings by maximum-
likelihood, a multivariate normal distribution is assumed
to underlie the variables. The maximum-likelihood
estimates of loadings and uniquenesses are obtained
from minimizing the discrepancy function

F Kð Þ ¼ logjRj þ traceðSS�1Þ, ð5Þ

where S denotes the usual sample covariance matrix and
R¼KK0 þW. Note that the expression for R differs

from that in Eq. (2) because of the requirement U¼ I
discussed previously. Minimization of Eq. (5) with
respect to the l and c parameters requires iterative
numerical methods.

If the assumptions underlying maximum-likelihood
estimation are met, then this parameter estimation meth-
od has several desirable properties. First, it provides
a likelihood-ratio statistic for testing the hypothesis that
a particular number of factors is sufficient to describe the
sample covariance matrix adequately. Second, standard
errors for the loadings can be derived that allow testing of
whether the loadings are different from zero. Third, the
solution is scale-free in the sense that the results obtained
from analyzing the correlation matrix can be obtained by
rescaling the results obtained from analyzing the covari-
ance matrix, and vice versa. A drawback of maximum-
likelihood factor analysis is that the sample covariance
matrix has to be of full rank.

Principal-Axis Factor Analysis

Principal-axis factoring starts by considering the matrix
Sr¼ S� ~WW, where ~WW contains initial estimates of
the uniquenesses. One popular method of obtaining
these initial estimates is to calculate ~ccii ¼ siið1�R2

i Þ,
where sii is the ith variable’s variance andR2

i is the squared
multiple correlation coefficient obtained from a regre-
ssion of xi on the remaining variables.

Because Sr is symmetric, it is possible to write
Sr¼CHC0, where the columns of C contain p
eigenvectors of Sr and H¼ diag(y1, . . . , yp) contains the
corresponding eigenvalues yj, j¼ 1, . . . , p. Without loss
of generality, the eigenvalues can be assumed ordered
such that y1� y2 � � � � yp. Note that some of these
eigenvalues may be negative. Let the number of positive
eigenvalues be greater or equal to q, then Kq ¼
Cq diagðy1=21 , . . . , y1=2q Þ can be defined, where Cq contains
the first q columns of C.

If one defines ~SS¼KqK0
q, then it can be shown that this

matrix minimizes the least-squares discrepancy function

F Kð Þ ¼ trace½ðSr � ~RR Þ2� ð6Þ

for fixed q. In other words, Sr can be optimally
approximated in the least-squares sense by KqK0

q, and
therefore S is closely approximated by KqK0

qþ ~WW. It is
possible to iteratively apply this procedure. Having
estimated Kq using the procedure just explained, the
initial estimate of W can be updated by calculating
~WW¼ diag(S�KqK0

q). An updated Sr matrix can then be
calculated that leads to a new estimates of Kq. The
iteration is continued in this manner until the change in
the factor loadings across successive iterations becomes
negligible. Minimizing Eq. (6) has been recommended
as more likely to find real but small factors when
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compared to the number of factors extracted from
minimizing the maximum-likelihood discrepancy func-
tion [see Eq. (5)].

Determining the Number of
Factors

Approaches to estimating the factor loadings require the
number of factors to be known. However, this is hardly
ever the case in practice. Therefore, starting with a one-
factor model, models are fitted to the data, increasing the
number of factors sequentially by one.

If the factor model has been fitted by maximum like-
lihood and the variables follow a multivariate normal dis-
tribution, a likelihood-ratio test can be used to test
whether a specific number of factors is sufficient to ex-
plain the sample covariances. The null hypothesis states
that at most q factors underlie the sample covariances. If
H0 is true, the test statistic follows asymptotically a chi-
squared distribution, with degrees of freedom given by
Eq. (4). A drawback of the likelihood-ratio test is that the
number of significant factors will be overestimated if the
factor model is only approximately true, especially when
sample size is large. In addition, if several models are
estimated by varying the number of factors, the test pro-
cedure is open to criticism because of an inflated type-one
error rate due tomultiple testing. Therefore, it is useful to
consider two other commonly used rules of thumb for
deciding on the number of factors that do not require
specific distributional assumptions. However, both
rules apply only if the sample correlation matrix R
rather than the sample covariance matrix S is used to
fit the factor model.

The first rule is based on the eigenvalues ofR. Because
only a few of these eigenvalues will be larger than 1.0, this
rule states that the number of factors should equal the
number of eigenvalues greater than 1.0. The second rule
for choosing the number of factors is a visual plotting
procedure called the scree test, which plots the ordered
eigenvalues against their rank. Ideally, the decreasing
trend in the eigenvalues exhibited by this plot has
a clifflike shape. Such a shape results if only the first
few eigenvalues are ‘‘large’’ and the remaining eigenvalues
exhibit a linear decreasing trend, representing the
‘‘scree.’’ It has been recommended to retain as many fac-
tors as there are eigenvalues too large to be considered
part of the scree. Although there is no mathematical ra-
tionale behind this procedure, the validity of the scree test
has become accepted in standard factor analysis books.
A drawback of the scree test is that it may be difficult
sometimes to determine by visual inspection whether
a particular eigenvalue should be considered large or
small. To remedy the subjectivity involved in the scree

test, there is a statistical test for the hypothesis, that the
decrease in a set of eigenvalues follows a linear trend.
Finally, note that the criteria discussed in this section
may not agree when applied to a particular data set. In
these cases, researchers may want to decide on the num-
ber of factors by taking substantive knowledge into
consideration.

Rotating Factors to
Simple Structure

Because the estimated factor loadings are based on arbi-
trary constraints used to define uniquely the model pa-
rameters, the initial solution may not be ideal for
interpretation. Recall that any factor transformation
j� ¼Tj for which diag(TUT0)¼ I is an equally legitimate
solution to Eq. (1). To simplify interpretation, it is desir-
able to rotate the factor loadingmatrix to simple structure,
which has been defined in terms of five criteria: (1) each
row of K should have at least one zero; (2) each of the q
columns ofK should have at least q zeros; (3) for every pair
of columns of K, there should be several variables with
a zero loading in one column but not in the other; (4) for
every pair of columns ofK, there should be a considerable
proportion of loadings that are zero in both columns if
q� 4; and (5) for every pair of columns of K, only few
variables should have nonzero loadings in both columns.
Rotation techniques differ according to their emphasis on
particular simple structure criteria.

Generally, a distinction is made between orthogonal
and oblique rotation techniques, which yield uncorrelated
or correlated factors, respectively. If the substantive con-
cepts identified by the factors are related, correlated fac-
tors are appealing because they allow for a more realistic
representation of the concepts, as compared to orthogonal
factors.

One of the most popular orthogonal rotation methods
is the varimax approach. This approach aims at finding
a loading pattern such that the variables have either large
(positive or negative) loadings or loadings that are close to
zero. The varimax approach tries to accomplish this load-
ing pattern by maximizing the variance of the squared
loadings for each factor. Another popular orthogonal ro-
tation techniques is the quartimax rotation, which
maximizes the variance of the squared factor loadings
in each row.

One of the most common oblique rotation techniques
is the promax approach. This approach improves the load-
ing pattern obtained from an orthogonal rotation in the
sense of further increasing large loadings and further
decreasing small loadings. Varimax rotation is commonly
used as prerotation to promax. The promax approach
accomplishes this goal in two steps. First a ‘‘target’’ matrix
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is obtained from the normalized loading matrix by replac-
ing each factor loading by its kth power. For even powers,
the signs of the loading matrix elements carry over to the
corresponing target matrix elements. Common values for
k are 3 and 4. Second, the orthogonal factors are rotated
such that the variable loadings are, in the least-squares
sense, as close as possible to the corresponding elements
of the target matrix.

Predicting the Factor Scores

Because the factor model assumes that the variables
are determined to a considerable extent by a linear
combination of the factors xi1, . . . , xiq, it is often of
interest to determine the factor scores for each indi-
vidual. Two approaches to predicting factor scores
from the variable raw scores are discussed here.
Both approaches assume variables and factors to be
jointly normally distributed.

The so-called regression factor scores are obtained as

ĵj ¼ UK0R�1
x:

It can be shown that this predictor minimizes the
average squared prediction error, Ef

Pq
j¼1ðx̂xj � xjÞ

2g,
among all factor score predictors that are linear
combinations of the variables.

The Bartlett factor score predictor is given by

ĵj ¼
�
K0W�1K

��1
K0W�1

x:

This expression also minimizes the average squared
prediction error among all factor score predictors that
are linear combinations of the variables. In addition, the
Bartlett factor score predictor is conditionally unbiased,
that is, E(~jj j j)¼ j. Notice that when calculating the
factor scores, the matrices K and W are replaced by
their estimates. In these cases, the optimum property

under which the predictors have been derived may not
apply. The formula for the Bartlett factor scores can be
expressed equivalently when W is replaced with R. An
advantage of this formulation is that the factor scores
can be calculated even if W is singular, which may occur
if uniquenesses are zero (Heywood case).

The use of factor scores is problematic because the
factor loadings and the factor intercorrelations cannot
be defined uniquely. The predicted factor scores will de-
pend on the selected rotation procedure; therefore, factor
scores resulting from different rotation procedures may
rank order individuals differently. In addition, factor
scores are problematic to use as independent variables
in regression models because their values differ from the
true values, which typically leads to bias in the regression
coefficients.

Example

Generally, the results froma factor analysis of a correlation
matrix and the corresponding covariance matrix are not
identical. When analyzing a covariance matrix, variables
having large variance will influence the results of the
analysis more than will variables having small variance.
Because the variances of the variables are intrinsically
linked to the measurement units, it is preferable to
analyze standardized variables, which is equivalent to fit-
ting the factor model based on the correlation matrix, if
the variables have been measured using different units.

Factor analysis can be illustrated using the artificial
data set given in Table I. The data set contains standard-
ized performance scores of 10 individuals obtained from
an algebra problem, a trigonometry problem, a logic
puzzle, a crossword puzzle, a word recognition task,
and a word completion task. The correlation matrix of

Table I Standardized Raw Scores of Six Performance Measuresa

Observation x1 x2 x3 x4 x5 x6

01 �0.697 �0.700 �1.268 �2.245 �1.973 �1.674

02 �1.787 �1.538 �2.018 0.486 �0.163 �0.065

03 0.206 �0.913 0.079 0.801 0.964 1.043

04 �0.191 �0.430 1.074 0.002 �0.071 �0.159

05 �0.606 �0.225 0.296 �0.602 �0.990 �1.174

06 0.171 �0.417 �0.620 �0.519 0.694 0.648

07 1.460 1.038 0.532 1.261 �0.364 0.848

08 �0.639 0.888 0.306 �0.372 �0.305 1.101

09 0.779 1.595 0.775 0.499 1.215 �1.055

10 1.304 0.702 0.844 0.688 0.992 0.488

aThe performance measures (x1�x6) are scores obtained on six tests: an algebra problem, a trigonometry problem,
a logic puzzle, a crossword puzzle, a word recognition task, and a word completion task.
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the six performance measures calculated from the raw
data of Table I is

R ¼

1:0 0:7 0:7 0:5 0:5 0:3

0:7 1:0 0:7 0:3 0:3 0:1

0:7 0:7 1:0 0:4 0:4 0:2

0:5 0:3 0:4 1:0 0:7 0:6

0:5 0:3 0:4 0:7 1:0 0:5

0:3 0:1 0:2 0:6 0:5 1:0

0
BBBBBBBB@

1
CCCCCCCCA
:

It is hoped that subjecting this matrix to factor analysis
will explain the correlations between the performance
scores in terms of a small number of factors having easily
interpretable relations to the tasks. First, the number of
factors has to be determined. The eigenvalues of the
sample correlation matrix are 3.34, 1.35, 0.47, 0.30, 0.28,
and 0.26. Clearly, if the criterion to retain as many
factors as there are eigenvalues greater than 1.0 is
employed, two factors are retained. The scree plot in
Fig. 1 confirms this conclusion. Clearly, the ‘‘small’’
eigenvalues appear to decrease linearly.

Finally, because the factor model has been fitted by
maximum likelihood, the likelihood-ratio test can be used
to evaluate the hypothesis that two factors are sufficient to
explain the sample correlations. The test statistic yields
a value of 0.0334 that can be compared against a suitable
quantile of the chi-square distribution based on df¼ 4. If
the nominal type-one error rate is set to 0.05, this test does
not provide evidence against the null hypothesis. As
a result, for this artificial data set, all three criteria for
determining the number of factors agree.

Next the focus is on the interpretation of the factors.
Table II contains the factor loadings for the unrotated
factors, the factor loadings after varimax rotation, and the
factor loadings after promax rotation (the target matrix is
created using k¼ 3 and varimax rotation). Because
the maximum-likelihood estimates of the loadings on the
unrotated factors satisfy the canonical constraint, the
unrotated loadings are typically not of substantive interest.
However, note that maximum-likelihood factor analysis to-
gether with the constraint K0W�1K is equivalent to Rao’s
canonical factor analysis. Because the orthogonal varimax
rotation and the oblique promax rotation attempt toprovide
loadings that fulfill Thurstone’s simple structure criteria,
these loadings are more useful for interpretation.

First, consider the factor loadings after varimax rota-
tion. Because varimax is an orthogonal rotation, the load-
ings can be interpreted as correlations between the
variables and the factors. Based on the pattern of these
loadings, each of the six variables can be identified with
one and only one of the factors. Variables x1, x2, and x3 are
considerably influenced by the first factor whereas
variables x4, x5, and x6 are mainly determined by the sec-
ond factor. Because the first three variables involve cog-
nitive processing of formal and abstractmaterial, itmay be
desirable to label the first factor as ‘‘formal ability’’ or
‘‘mathematical ability.’’ Similarly, because the last three
variables, which involve cognitive processing of verbal
material, load highly on the second factor, it may be con-
venient to label the second factor ‘‘verbal ability.’’

Based on the loadings from the oblique promax rota-
tion, the conclusions about the direct influence of the fac-
tors on the variables are essentially the same as before.
Overall, the comparison between the loadings from the
orthogonal and the oblique rotation shows that the
relationships between the factors and the variables have
becomeclearerbyallowing forcorrelated factors.Basedon
the promax rotation, the correlation between the factors is
estimated to bemoderately high—specifically,f12¼ 0.46.

It is also interesting to consider the factor structure
matrix, which for correlated factors gives the correlations
between the variables and the factors. Using the factor
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Figure 1 Scree plot depicting the ordered eigenvalues plotted
against their rank. ‘‘Small’’ eigenvalues follow a linear decreasing
trend.

Table II Maximum-Likelihood Estimates of Factor Loadings
before Rotation and after Varimax and Promax Rotation

Rotation method

Unrotated Varimax Promax

Variable x1 x2 x1 x2 x1 x2

x1 0.828 �0.226 0.781 0.356 0.758 0.184

x2 0.711 �0.489 0.860 0.079 0.920 �0.141

x3 0.754 �0.335 0.794 0.225 0.807 0.037

x4 0.746 0.486 0.263 0.851 0.055 0.864

x5 0.693 0.373 0.294 0.730 0.123 0.722

x6 0.482 0.485 0.061 0.681 �0.120 0.731
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loadings from the promax rotation, the factor structure
matrix is

Corr x, jð Þ ¼

0:843 0:534

0:855 0:285

0:824 0:411

0:455 0:889

0:457 0:779

0:218 0:676

0
BBBBBBBB@

1
CCCCCCCCA
:

This matrix shows that because of the factor inter-
correlation, a small factor loading does not necessarily
imply a small correlation between the corresponding
variable�factor pair. In fact, the correlations in the
factor structure matrix that correspond to small factor
loadings have a moderately high value.

For the present example, factor rotation can be illus-
trated graphically. The left-hand panel of Fig. 2 depicts
the loadings with respect to both the unrotated factors
(solid lines) and the factors after varimax rotation (dashed
lines). The right-hand panel of Fig. 2 depicts the loadings
with respect to both the unrotated factors (solid lines) and
the factors after promax rotation (dashed lines).

Finally, both the regression factor scores and the Bart-
lett factor scores are given in Table III. These scores are
based on the results of the promax rotation. Because the
factor scores are centered, positive and negative values
can be interpreted as being above and below average,
respectively. From Table III, the first individual appears
to be considerably below average in terms of both math
and verbal abilities. The second individual is considerably
below average for math ability but about average for
verbal ability. The factor scores of the other individuals

may be interpreted similarly. Although there are small
discrepancies between the regression factor scores and
theBartlett factor scores, overall they appear to agreewell
for this data set.

See Also the Following Articles

Eysenck, Hans Jürgen � Guttman, Louis � Maximum Likeli-
hood Estimation � Thurstone’s Scales of Primary Abili-
ties � Thurstone, L.L.

Further Reading

Bartholomew, D. J., and Knott, M. (1999). Latent Variable
Models and Factor Analysis, 2nd Ed. Arnold, London.

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Factor I

x1

x2

x3

x4

x5

x6

–1.0 –0.5 0.0 0.5 1.0

–1.0

–0.5

0.0

0.5

1.0

Factor I

x1

x2

x3

x4
x5

x6

Fa
ct

or
 I

I

Fa
ct

or
 I

I

Figure 2 Loadings of variables on unrotated and rotated axes. The left-hand panel depicts the loadings with
respect to the unrotated and varimax-rotated factors. The right-hand panel depicts the loadings with the respect to
the unrotated and promax-rotated axes.

Table III Regression and Bartlett Factor Scores Calculated
from the Result of a Maximum-Likelihood Factor Analysis after
Promax Rotation

Factor score

Regression Bartlett

Observation x1 x2 x1 x2

01 �1.008 �2.122 �0.994 �2.463

02 �1.764 0.093 �2.076 0.300

03 �0.230 0.968 �0.356 1.197

04 0.070 �0.014 0.083 �0.024

05 �0.244 �0.846 �0.211 �0.998

06 �0.296 0.036 �0.351 0.075

07 1.065 0.862 1.173 0.931

08 0.187 �0.199 0.237 �0.261

09 1.214 0.389 1.389 0.342

10 1.007 0.833 1.107 0.902
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